臺中健康暨管理學院

系所別	組 別	考試科目	考試日期	時 間	備註
資訊學院碩士班		數學	93.5.3	13:30-15:10	共二頁

※ 選擇題,共二十題,每題五分

- 1. How many distinct nonnegative integer solution are there to the equation $x_1 + x_2 + x_3 = 7$ in which $x_1 \ge 3$?
 - (A) 36 (B) 15 (C) 84 (D) none of the above.
- 2. Let $S = \{2, 4, 6, 8\}$ and $T = \{1, 5, 7\}$. Find the number of subjective functions from S to T. (A) 64 (B) 81 (C) 36 (D) none of the above.
- 3. If all the nodes of a simple, connected, planar graph have degree 4 and the number of edges is 12, into how many regions does it divide the plane? (A) 8 (B) 9 (C) 10 (D) none of the above.
- 4. How many positive integer n less than 6000 satisfy gcd(n, 6000)=1, where gcd(x, y) denotes the greatest common divisor of x and y? (A) 3200 (B) 1600 (C) 800 (D) none of the above.
- 5. What is the value of $\sum_{k=1}^{\infty} k 3^{k}$?
 - (A) 259590 (B) 250995 (C) 250959 (D) none of the above.
- 6. Find the determinant of the matrix $\begin{vmatrix} 1 & 2 & 2 & 1 \\ 2 & 5 & 1 & 0 \\ 0 & 1 & 2 & 5 \end{vmatrix}$.
 - (A) 28 (B) 29 (C) 30 (D) none of the above.
- 7. Let $S = \{1, 2, 3, 4\}$. Which of the following properties holds for relation $R = \{(1,2), (2,2), (2,4), (3,1), (4,2)\}$?
 - (A) reflexivity (B) antisymmetry (C) transitivity (D) none of the above.
- 8. Let χ_n be a sequence satisfying $\chi_n = -2n \chi_{n-1} + 3n(n-1) \chi_{n-2}$ with $\chi_0 = 1$, $x_1 = 2$, what is x_1 ?

(A)
$$x_n = 2^n$$
 (B) $x_n = (\frac{2}{9} - \frac{15n}{18})(-2)^n + \frac{7}{9}$ (C) $x_n = \frac{n!}{4}(5 - (-3)^n)$

- (D) none of the above.
- 9. Which of the following is incorrect?
 - (A) $K_{2,3}$ is a planar graph
- (B) Petersen graph is a planar graph
- (C) $K_{3,3}$ is not a planar graph (D) K_4 is a planar graph.

臺中健康暨管理學院

- (A) 7 (B) 3 (C) 1 (D) none of the above.
- 11. Which of the following statement is tautology?

(A)
$$[\overline{B} \land (A \to B)] \to \overline{A}$$
 (B) $\overline{A \lor B} \equiv \overline{A} \lor \overline{B}$ (C) $A \to B \equiv \overline{A} \land B$ (D) $(A \to B) \land A \to \overline{B}$

- A collection S of strings of characters is defined recursively by (1). a and b belong to S. (2). If x belongs to S, so does xb. Which of the following belongs to S?
 (A) aba (B) aaab (C) aaaaa (D) none of the above.
- 13. For A = {1, 2, 3, 4, 5, 6, 7, 8 }, determine the number of subsets of A containing three elements.
 - (A) 58 (B) 57 (C) 56 (D) none of the above
- 14. Find the coefficient of x^{16} in $(1+x^4+x^8)^{10}$.
 - (A) 615 (B) 620 (C) 645 (D) none of the above.
- 15. Let $f: R \to R$ be defined by $f(x) = x^*$, where n is a fixed, positive integer. For what value of n could f be bijective?
 - (A) 2 (B) 3 (C) 4 (D) none of the above.
- 16. Let $f: R \to R$ be defined by $f(x) = x^2$. Let $g: R \to R$ be defined by g(x) = 3x + 1, what is the value of $(g \circ f)(4) = ?$
 - (A) 49 (B) 51 (C) 48 (D) none of the above.
- 17. Which of the following characteristics could exist?
 - (A) four nodes of degree 1, 2, 3, and 4, respectively.
 - (B) simple, four nodes of degree 1, 2, 3, and 4, respectively.
 - (C) four nodes of degree 2, 3, 3, and 3, respectively.
 - (D) four nodes of degree 2, 2, 2, and 3, respectively.
- 18. What is the number of all nonisomorphic simple graphs having four vertices?(A) 11(B) 10 (C) 9 (D) none of the above.
- 19. Which of the following complete graphs could contain an Euler cycle?
 - (A) K_{23} (B) K_{24} (C) K_{26} (D) none of the above.
- 20. Which of the following complete bipartite graphs could contain a Hamiltonian cycle?
 - (A) $K_{20,21}$ (B) $K_{20,22}$ (C) $K_{10,30}$ (D) none of the above.