亞洲大學

九十五學年度碩士班招生考試試題紙別 組別 考試科目 考試日期 時

	1.)))	71	4- 17	,	4 1001 12	4 11 2 42	n+ DB	/14	<u> </u>
		所	別	組別	-	考試科目	考試日期	時 間	備	註
生	物科技與生	生物資	訊學系碩士班	生物資訊 生物科技		生物化學	95.4.30	10:30-12:10	共力	₹頁
M	ultiple Cl	hoice	Question (ई	選題): 2	poir	nts each				
1.	. Which of the following is the inhibitor for alternative purine synthesis? (A) guanine (B) hypoxanthine (C) aminopterin (D) thymidine									
2.	The fifth carbon of the glucose is labeled with radioisotope, which of the following is not radioactive? (A) glyceraldehyde-3-phosphate (B)dihydroxyacetone phosphate (C) pyruvate (D) phosphoenolpyruvate									
3.	(A) succin	ate→f	owing proceed umarate nosphate→glud	(B) phosph	oenol	lpyruvate→py				
4.	4. Continuing from the above question, how many ATP can the energy generated through this process be converted to through electron transport tand oxidative phosphorylation in mammalian cells? (A) 0.5 ATP (B) 1.5 ATP (C) 2.5 ATP (D) 3.5 ATP									
5.	 6. Continuing from the above question, the sequence for the electron transport chain will be : (A) Complex I → coenzyme Q → complex III → cytochrome c → complex IV (B) Complex II → coenzyme Q → complex III → cytochrome c → complex IV (C) Complex III → coenzyme Q → complex II → cytochrome c → complex IV (D) Complex IV → coenzyme Q → complex III → cytochrome c → complex I 									
6.	6. The major difference between saturated and unsaturated fatty acid catabolism is: (A) cis-trans isomerization (B) cis-trans translocation (C) cis-trans dehydration (D) cis-trans hydration									
7.	 Which is not the chain lengthening site for fatty acid synthesis? (A) endoplasmic reticulum (B) mitochondria (C) cytosol (D) none of the above 									
8.		l isoth	_	ey compou (B) polyacı (D) dextrar	rylam	_	adation meth	od?		
9.	The second molecule by (A) the size (C) the str	oased o ze	(B) the n	et charge	-dime	ensional gel el	lectrophoresi	s is to separa	te the	

10. Which linkage is NOT in a glycogen molecule? (A) $\alpha(1\rightarrow 4)$ (B) $\beta(1\rightarrow 4)$ (C) $\alpha(1\rightarrow 6)$ (D) None of the above

系 所 別	組 別	考試科目	考試日期	時 間	備 註				
生物科技與生物資訊學系碩士班	生物資訊組 生物科技組	生物化學	95.4.30	10:30-12:10	共六頁				
11 W/L:-h11: :- :11:1:									

土物杆权祭	上初貝矶子;	· 明工班 生	.物科技組	工物化子	93.4.30	10.30-12.10	N N R
11.Which mo							
(A)GIP	(B) CTP	(C) ATI	P (D) U	IP			
	-	-		n mitochondria (D) citrate	?		
(B) oxalo	ate \rightarrow oxalo acetate \rightarrow p	acetate hosphoenol	pyruvate	oxaloacetate			
(B) bypas (C) bypas	sing the suga sing the oxic sing both the	ar generatio lative stage e sugar gene	n stage of p of pentose eration and	entose phospha phosphate path the oxidative st the oxidative s	way ages of pento		-
(A) $18:2 \Delta$	e abbreviation \(\delta\),10,12,13 (\delta\),7,9,10	(B)18:2 Δ 9,	12	CH(CH ₂)CH=C	H(CH ₂) ₇ COC	OH?	
(A) Triacy	he following Iglycerol lipid	(B) cho	lesterol	y of biomembra	ane?		
(B) Na ins (C) both N	p is to transp tside of the co side of the co Na and K out Na and K ins	cell & K insell & K outsell & K outself the	ide of the c cell.				
(A) Increa (B) decrea (C) averag	dies will resuse the affinitions the affinitions are the affinitions and the affinitions are the affinitions.	ty of hemog ty of hemog finity of her	lobulin to (globulin to (noglobulin	O_2 to O_2			
-		•	•	enerate oxaloac tyl CoA. (D) C			
20.How many and H_2O in		ill be gener	ated after o	ne glucose mol	ecule is oxidi	ized complete	ely to CO ₂
(A) 26		(C)	30 (I	0) 32			

系 所 別	組別	考試科目	考試日期	時 間	備 註
生物科技與生物資訊學系碩士班	生物資訊組 生物科技組	生物化學	95.4.30	10:30-12:10	共六頁

- 21. Continuing from the above question, which shuttle mechanism is used for transport the metabolite between mitochondria and cytosol in liver?
 - (A) glycerol-phosphate shuttle
- (B) pyruvate-oxaloacetate shuttle
- (C) citrate-succinate shuttle
- (D) malate-aspartate shuttle

The Genetic Code

The Genetic Code									
First Position		Seco	ond Position		Third Position				
5' end	U	С	A	G	3' end				
	Phe	Ser	Tyr	Cys	U				
U	Phe	Ser	Tyr	Cys	С				
U	Leu	Ser	STOP	STOP	A				
	Leu	Ser	SeCys; STOP	Trp	G				
	Leu	Pro	His	Arg	U				
C	Leu	Pro	His	Arg	С				
C	Leu	Pro	Gln	Arg	A				
	Leu	Pro	Gln	Arg	G				
	Ile	Thr	Asn	Ser	U				
A	Ile	Thr	Asn	Ser	С				
A	Ile	Thr	Lys	Arg	A				
	Met	Thr	Lys	Arg	G				
	Val	Ala	Asp	Gly	U				
\mathbf{C}	Val	Ala	Asp	Gly	С				
G	Val	Ala	Glu	Gly	A				
	Val	Ala	Glu	Gly	G				

22	. Kozak sequence (ACCAUGG) is the sequence involved in the identification of translational
	initiation site. Using the genetic code above, how many possible polypeptide chains will be
	produced from the nucleic acid sequence below?

5'-AUGCCAUGAUGUAGUACCAUGGGUAGGCAUGAAUGUGACUGAUUUAAGUAACA AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

(D)4

- (A) (B) 2 (C) 3 1
- 23. Continuing from the above question, which of the following is not included in any possible polypeptide chain? (A) Glycine (B) Cysteine (C) Valine (D) Lysine
- 24. What are the human intron boundaries?
 - (A) 5' GU.....AG 3'
- (B) 5' UG.....GA 3'
- (C) 5' AG......GU 3'
- (D) 5' GA.....UG 3'
- 25. Deamination of 5-methyl cytosine leads to:
 - (A) C to A transversion mutations
 (B) C to A transition mutations
 (C) G to A transversion mutations
 (D) G to A transition mutations

	九十五学年度碩士班招生考試試題紙									
	系	所	別		組 別	考試科目	考試日期	時 間	備	註
生物和	斗技與生	.物資言	訊學系碩	十班	生物資訊組 生物科技組	生物化學	95.4.30	10:30-12:10	共六	頁
						rine biosynthe oterin (D) thyn				
A B C D		1.52 3.02 9.02 7.92	•	0. 0. 7. 7.	14 50					
(A	A) Zn-fin	iger	owing is a		, ,	ırn-helix motif	<u>.</u>			
(A	hich is ro A) DNA C) DNA	polym	erase α	(B	plication in e) DNA polyn) DNA polyn	•	ochondria?			
(A		one res	ponsive e		-acting eleme ts (B) enl (D) ope	nancers				
	hich sub A) α		-	lymera (C) ρ	se holoenzyn (D) σ	ne is responsib	le for the bin	ding to the se	ense DN	NA?
	hich are A) 30S, 5		o subunits (B) 40S,		ukaryotic ribo (C) 30S, 70		S, 80S			
(A		e trans	responsil criptase	(B	cDNA synth) DNA polyn) all of the ab	nerase				
(A	hich seq A) Kozak C) Signal	seque	ence ((B) Sh	ribosome bir ine-Dalgarno xazaki sequen	-	ryote?			
	hich of t A) operat		owing ma (B) enha	•	belong to pro (C) TATA b	moter region? oox (D) CAI				
(A (B (C	3) post-tra	anscrip anscri anslatio	f the: otional mo ptional modi onal modi	odifica ficatio	ntion n					
	hich of t A) NTPs	he foll	owing is ((B) rNTF	-	y material for C) dNTPs	Sanger metho (D)ddNTPs	d to determin	ne DNA seque	ence?	

亞洲大學

九十五學年度碩士班招生考試試題紙

系 所 別	組別	考試科目	考試日期	時 間	備註
生物科技與生物資訊學系碩士班	生物資訊組 生物科技組	生物化學	95.4.30	10:30-12:10	共六頁

- 38. Which of the characteristic does not belong to eukaryotic DNA replication?
 - (A) semi-conservative
- (B) semi-discontinuous
- (C) single origin of replication
- (D) 5' to 3' replication direction
- 39. Which of the following has higher Tm (transition temperature)?
 - (A) 5' GTGCCTGCG 3'
- (B) 5' ATATCGTAT 3'
- (C) 5' CAGTAGATAC 3'
- (D) 5' CTAGGATGC 3'
- 40. The formation of 1,3-diphosphoglycerate is accompanied by the formation of NADH in the cytoplasm. What is the primary fate of this NADH under aerobic conditions?
 - (A).It accumulates in the cytosol. (B).It diffuses into mitochondria.
 - (C).It transfers its reducing equivalents directly to NADP+
 - (D). The reducing equivalents are transferred by a shuttle system to the mitochondrial electron transport system.
- 41. In the Cori cycle, the liver is primarily responsible for converting lactate from muscle into a substrate which is returned to muscle. This substrate is chiefly:
 - (A) acetyl CoA.
- (B) glucose.
- (C).alanine.
- (D) pyruvate.
- 42. Which of the following for both DNA polymerase and RNA polymerase is NOT true?
 - (A) Both need a template.
- (B) Both require a primer.
- (C) Both reactions produce pyrophosphate as a product.
- (D) Both add 5' nucleotides to 3' hydroxyl groups.
- 43. What will be the effect of a single base pair deletion in the middle of a DNA sequence coding for a certain protein?
 - (A) A protein with a single amino acid substitution in its center.
 - (B) The gene will not be transcribed and no protein will be produced.
 - (C) The amino half of the protein will have a normal sequence.
 - (D) The carboxyl half of the protein will have a normal sequence.
- 44. Allosteric inhibitors of enzymes most LIKELY influence enzyme activity by:
 - (A) inducing a conformational change in the enzyme.
 - (B) promoting a covalent modification of the enzyme.
 - (C) binding to the active site of the enzyme.
 - (D) reacting with the substrate.
- 45. NADPH necessary for de novo biosynthesis of fatty acids can be produced directly by action of:
 - (A) glucose 6-phosphate dehydrogenase.
 - (B) mitochondrial malate dehydrogenase.
 - (C) glyceraldehyde-3-phosphate dehydrogenase.
 - (D) lactate dehydrogenase.

※試題請隨卷繳回 第五頁

	•	<u>~</u>			
系 所 別	組別	考試科目	考試日期	時 間	備 註
生物科技與生物資訊學系碩士班	生物資訊組 生物科技組	生物化學	95.4.30	10:30-12:10	共六頁

46. A competitive inhibitor:

- (A) forms an irreversible complex with a site on an enzyme other than the active site.
- (B) decreases the maximal velocity of the reaction catalyzed by an enzyme.
- (C) competes with the substrate for the active site of an enzyme.
- (D) lowers the Km for the substrate.
- 47. Glycolysis is only partially reversible because of energy barriers at the reactions catalyzed by:
 - (A) hexokinase, triose phosphate isomerase and pyruvate kinase.
 - (B) hexokinase, pyruvate dehydrogenase and phosphoenolpyruvate carboxykinase.
 - (C) hexokinase, phosphofructokinase, and pyruvate kinase.
 - (D) hexokinase, glyceraldehyde 3-phosphate dehydrogenase and pyruvate kinase.
- 48. Codon-anticodon interactions:
 - (A) take place between mRNA and tRNA.
 - (B) involve base-pairing between mRNA and rRNA.
 - (C) refer to interactions with the three termination codons.
 - (D) involve base-pairing between tRNAs and amino acids.
- 49. Which of the following is true about the difference between fatty acid degradation and biosynthesis?
 - (A) Fatty acid degradation is in cytosol while its biosynthesis is in mitochondria.
 - (B) Fatty acid degradation starts at carboxyl end while its biosynthesis starts at methyl end.
 - (C) The final product for fatty acid degradation is propinyl CoA while the final product for its biosynthesis is acetyl CoA.
 - (D) The malonyl-CoA is involved in the fatty acid degradation, but the malonyl-CoA is not involved in its biosynthesis.
- 50. Acetyl-CoA for de novo fatty acid biosynthesis is formed by the energy-dependent cleavage of:
 - (A) pyruvate.
- (B) oxaloacetate.
- (C) citrate.
- (D) α -ketoglutarate.

※試題請隨卷繳回 第 六頁