### 96 學年度碩士班入學招生考試試題紙

| 學系別           | 考試科目 | 考試日期    | 時 間         |
|---------------|------|---------|-------------|
| 生物科技學系、生物資訊學系 | 生物化學 | 96.4.21 | 10:30-12:10 |

#### Part I. Multiple Choice Question: 35%

- 1. To disrupt the cell membrane for protein extraction, which of the following material should be used?
  - (A) dextran

- (B) triton X-100
- (C) diethylaminoethyl cellulose (D) carboxymethyl celluose
- 2. Which of the following is not a polysaccharide?
  - (A)chitin
- (B) cellulose (C) pectin (D) lignin
- 3. The enzymes that are responsible for three important control points in glycolysis are:
  - (A) hexokinase, triose phosphate isomerase, and pyruvate kinase.
  - (B) hexokinase, pyruvate dehydrogenase, and phosphoenolpyruvate carboxykinase.
  - (C) hexokinase, phosphofructokinase, and pyruvate kinase.
  - (D) hexokinase, glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase.
- 4. The process of long chain fatty acid oxidation in liver is regulated in part by the interaction of:
  - (A) acetyl-CoA with carnitine acyl transferase I.
  - (B) acetyl-CoA with carnitine acyl transferase II.
  - (C) malonyl-CoA with carnitine acyl transferase I.
  - (D) malonyl-CoA with carnitine acyl transferase II.
- 5. In the Cori cycle, the liver is primarily responsible for converting a substrate from muscle into glucose which is then returned to muscle. This substrate is:
  - (A) acetyl CoA.
- (B) glucose.
- (C) alanine.
- (D) lactate
- 6. NADPH necessary for de novo biosynthesis of fatty acids can be produced directly from:
  - (A) pentose phosphate pathway.
  - (B) glycolysis.
  - (C) Kreb cycle.
  - (D) oxidative phosphorylation.
- 7. What is the abbreviation for  $CH_3(CH_2)_4CH=CH(CH_2)CH=CH(CH_2)_7COOH$ 
  - (A)  $18:2 \Delta 9, 10, 12, 13$
- (B)  $18:2 \Delta 9,12$
- (C)  $18:2 \Delta 6,7,9,10$
- (D)  $18:2 \Delta 6.9$

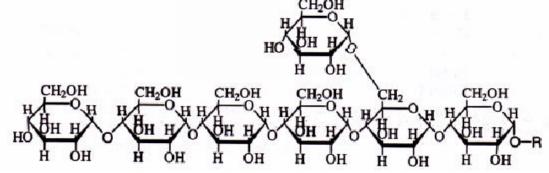
#### 96 學年度碩士班入學招生考試試題紙

| 學系別           | 考試科目 | 考試日期    | 時 間         |
|---------------|------|---------|-------------|
| 生物科技學系、生物資訊學系 | 生物化學 | 96.4.21 | 10:30-12:10 |

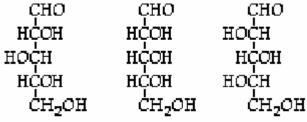
- 8. Which transport system is participated in glucose transport in vivo?
  - (A) active transport
- (B) facilitated diffusion
- (C) passive transport
- (D) all of the above
- 9. The main purpose of glycoxylate cycle is to generate oxaloacetate from acetyl CoA for:
  - (A)TCA cycle in bacteria.
- (B) gluconeogenesis in plant.
- (C) TCA cycle in animal.
- (D) gluconeogenesis in animal.
- 10. Which of the following is the shuttle mechanism for metabolite transport between mitochondria and cytosol during glycolysis in muscle?
  - (A) glycerol-phosphate shuttle
- (B) pyruvate-oxaloacetate shuttle
- (C) citrate-succinate shuttle
- (D) malate-aspartate shuttle
- 11. Continuing from the above question, how many net ATPs will be generated after one maltose molecule was oxidized completely to CO<sub>2</sub> and H<sub>2</sub>O in muscle?
  - (A) 30
- (B) 32
- (C) 60
- (D) 64

- 12. One RNA sequence is listed below.

Using the genetic code provided, which of the following is not included in any of the possible polypeptides translated from the above RNA sequence?


- (A) proline
- (B) histidine
- (C) lysine
- (D) phenylalanine

| UUU Phe | UCU Ser | UAU Tyr | CGU Arg   |
|---------|---------|---------|-----------|
| UUC Phe | UCC Ser | UAC Tyr | CGC Arg   |
| UUA Leu | UCA Ser | UGU Cys | CGA Arg   |
| UUG Leu | UCG Ser | UGC Cys | CGG Arg   |
| CUU Leu | CCU Pro | CAU His | AGU Ser   |
| CUC Leu | CCC Pro | CAC His | AGC Ser   |
| CUA Leu | CCA Pro | CAA Gln | AGA Arg   |
| CUG Leu | CCG Pro | CAG Gln | AGG Arg   |
| AUU Ile | ACU Thr | AAU Asn | GGU Gly   |
| AUC IIe | ACC Thr | AAC Asn | GGC Gly   |
| AUA Ile | ACA Thr | AAA Lys | GGA Gly   |
| UGG Trp | ACG Thr | AAG Lys | GGG Gly   |
| GUU Val | GCU Ala | GAU Asp | UGA SeCys |
| GUC Val | GCC Ala | GAC Asp | 300/3     |
| GUA Val | GCA Ala | GAA Glu |           |
| GUG Val | GCG Ala | GAG Glu |           |


#### 96 學年度碩士班入學招生考試試題紙

| 學系別           | 考試科目 | 考試日期    | 時 間         |
|---------------|------|---------|-------------|
| 生物科技學系、生物資訊學系 | 生物化學 | 96.4.21 | 10:30-12:10 |

13. Which of the following glycosidic linkage is NOT shown in the molecule below?



- (A)  $\alpha$  -1,4-glycosidic linkage
- (B)  $\alpha$  -1,6-glycosidic linkage
- (C)  $\beta$ -1,6-glycosidic linkage
- (D) None of the above
- 14. Which factor is involved in the chain termination of RNA transcript?
  - $(A) \alpha$ (B)  $\beta$  $(C) \rho$  $(D) \sigma$
- 15. Which of the following is not the enzyme action?
  - (A) increase the rate of a reaction.
  - (B) lower the activation energy of a reaction.
  - (C) act specifically on one substrate or a group of related substrates.
  - (D) alter the equilibrium constant of a reaction.
- 16. Three structures are listed below. Molecule A and B are:



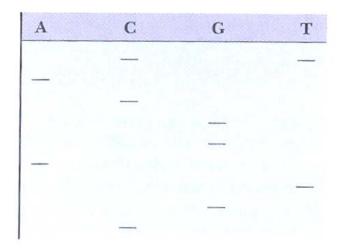
В

(A) enatiomers

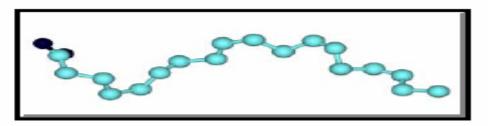
- (B) epimers
- (C) mirror-image stereoisomers (D) none of the above
- 17. Which of the following can not be processed in prokaryotes?
  - (A) DNA replication
- (B) gene transcription
- (C) mRNA translation
- (D) protein modification

#### 96 學年度碩士班入學招生考試試題紙

| 學系別           | 考試科目 | 考試日期    | 時 間         |
|---------------|------|---------|-------------|
| 生物科技學系、生物資訊學系 | 生物化學 | 96.4.21 | 10:30-12:10 |


- 18. Which of the following statement about telomerase is NOT true?
  - (A) Telomerase contains DNA complementary to the tolemere.
  - (B) Telomerase uses its own RNA as the template to reverse-transcribe DNA.
  - (C) Telomerase is not active in most adult tissues/cells.
  - (D) Telomerase is active in rapidly growing tissues.
- 19. The non-competitive inhibitor:
  - (A) forms an irreversible complex with the active site of an enzyme.
  - (B) forms a complex with a site on an enzyme other than the active site.
  - (C) competes with the substrate for the active site of an enzyme.
  - (D) lowers the Km for the substrate.
- 20. Which eukaryotic RNA polymerase is responsible for mRNA synthesis?
  - (A) RNA polymerase I (B) RNA polymerase II
  - (C) RNA polymerase III (D) RNA polymerase IV
- 21. Which of the following amino acids is incompatible with an alpha-helical structure?
  - (A) valine
- (B) glycine
- (C) proline
- (D) cysteine
- 22. Which of the following is not part of our current concept of biological membranes?
  - (A) a fluid lipid bilayer.
  - (B) proteins move laterally in the plane of the membrane.
  - (C) non-covalent association of protein with the lipid bilayer.
  - (D) proteins symmetrically distributed on both sides of the membrane.
- 23. The isoelectric point of alanine is 6.0. If alanine is dissolved in the pH 8.0 buffer and subjected to electrophoresis, it will:
  - (A) not migrate to either anode or cathode.
  - (B) migrate to the cathode (negative pole).
  - (C) migrate to the anode.
  - (D) some will migrate to the anode and some to the cathode.
- What is the amino acid listed below?

- (A) Lysine (B) Arginine
- (C) Isoleucine
- (D) Valine


#### 96 學年度碩士班入學招生考試試題紙

| 學系別           | 考試科目 | 考試日期    | 時 間         |
|---------------|------|---------|-------------|
| 生物科技學系、生物資訊學系 | 生物化學 | 96.4.21 | 10:30-12:10 |

- 25. Continuing from the above question, what is the PI value for this amino acid?
  - (A) 5.57
- (B) 6.36
- (C) 7.22
- (D) 9.74
- 26. All of the carbon and nitrogen atoms of the pyrimidine ring are supplied by which of the groups of compounds listed below?
  - (A) glutamate, glycine
- (B) glycine, aspartate
- (C) glutamine, N-10 formyl tetrahydrofolate
- (D) carbamoyl phosphate, aspartate
- 27. The photo shown below is the result of a DNA sequence gel using the Sanger method. Which of the following is the correct DNA sequence of the template strand?
  - (A) <sup>5'</sup> GATGCCTACG <sup>3'</sup>
- (C) 5' CGTAGGCATC 3'
- (B) <sup>5'</sup> GCATCCGTAG <sup>3'</sup> (D) <sup>5'</sup> CTACGGATGC <sup>3'</sup>

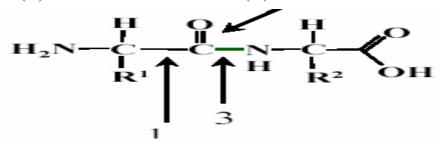


28. The figure shown below is a ball-and-stick representation of the crystal structure of a lipid (Note that the H atoms, which are often not evident in X-ray crystallography, are not shown). This lipid is:

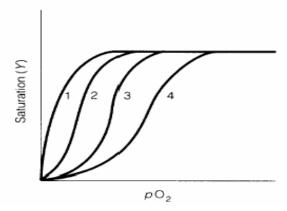


- (A) linolenic acid
- (B) palmitic acid
- (C) triacylglycerol
- (D) phosphatidylethanolamine

### 96 學年度碩士班入學招生考試試題紙


| 學系別           | 考試科目 | 考試日期    | 時 間         |
|---------------|------|---------|-------------|
| 生物科技學系、生物資訊學系 | 生物化學 | 96.4.21 | 10:30-12:10 |

- 29. The structure of a dipeptide is shown below. Which bond indicates the peptide bond?
  - (A) 1


(B)3

(C) 1 and 3

(D) none of the above



30. Several oxygen dissociation curves are listed in the figure below.



If curve #2 indicates the purified hemoglobulin in a solution containing physiological concentration of CO2 and BPG at pH 7.0, then which curve should represent the oxygen dissociation curve when the pH increases?

- (A) 1
- (B)2
- (C)3
- (D)4
- 31. The mRNA maturation from pre-mRNA does NOT need to go through:
  - (A) splicing
- (B) glycosylation
- (C) adenylation (D) capping
- 32. The molecule needed for transport of palmitic acid from the cytosol into mitochondria for oxidation is:
  - (A) cobalamin (vitamin B12).
- (B) coenzyme Q.
- (C) acyl carrier protein.
- (D) carnitine.
- 33. The acyl donor for cholesterol ester formation in blood is:
  - (A) phosphatidylcholine.
- (B) palmitoyl-CoA.

(C) triglycerides.

(D) acyl carrier protein.

#### 96 學年度碩士班入學招生考試試題紙

| 學系別           | 考試科目 | 考試日期    | 時 間         |
|---------------|------|---------|-------------|
| 生物科技學系、生物資訊學系 | 生物化學 | 96.4.21 | 10:30-12:10 |

- 34. Which statement regarding active transport of uncharged molecules through membranes is not true?
  - (A) normally involves a carrier protein rather than a channel protein.
  - (B) proceeds against a concentration gradient.
  - (C) obeys saturation kinetics.
  - (D) always involves an Na<sup>+</sup> gradient.
- 35. In the gene for a protein containing 300 amino acids, which of the following mutations would be the LEAST LIKELY to result in a non-functional protein?
  - (A) an insertion of a single nucleotide in codon 23
  - (B) a single base change in the third position of codon 12
  - (C) a nonsense mutation in codon 37
  - (D) a 10 base-pair deletion in the first exon

#### Part II. Short questions: 65%

- Many enzymes are important in nucleic acid analysis, such as RNA-dependent DNA polymerase, DNA-dependent DNA polymerase, DNA-dependent RNA polymerase, Taq DNA polymerase, DNA ligase, T7 kinase, primase, helicase and EcoR1 restriction enzyme.
  - (1) Describe briefly the main difference between DNA replication of the lagging strand and the leading strand. (5%)
  - (2) Which of the above enzymes are NOT involved in DNA replication of the lagging strand in animals? (5%)
  - (3) Specify briefly the function of the enzymes that you list in the above answer. (5%)
- 2. Dr. Whanger purified a new protein from animal tissues and made an antibody to identify this new protein.
  - (1) Dr. Whanger would need to check on the titer of this antibody for initial screening. Describe the method he could use and explain your answer. (5%)
  - (2) Dr. Whanger would like to further confirm the specific protein this antibody recognizes. Which method he should use? Describe the method and explain your answer. (5%)

#### 96 學年度碩士班入學招生考試試題紙

| 學系別           | 考試科目 | 考試日期    | 時 間         |
|---------------|------|---------|-------------|
| 生物科技學系、生物資訊學系 | 生物化學 | 96.4.21 | 10:30-12:10 |

- 3. Carbohydrate analysis problems:
  - (1) You are given a polysaccharide from animal origin to analyze. After hydrolysis, you get a collection of disaccharides, trisaccharides, tetrasaccharides, *etc*. You find that all of the disaccharide fraction consists of only one kind of molecule---maltose. Based on these findings, what is the polysaccharide you analyzed? Explain your answer. (5%).
  - (2) You are given a polysaccharide to analyze. After hydrolysis, you get a collection of disaccharides, trisaccharides, tetrasaccharides, *etc*. You find that all of the disaccharide fraction consists of only one kind of molecule---cellobiose. Based on these findings, list all the glycosidic linkage involved in this polysaccharide and explain your answer. (5%).
  - (3) You are given a disaccharide to analyze. You treat this disaccharide with α-glucosidase, β-galactosidase, α-fructosidase and β-fructosidase and find that only β-galactosidase can hydrolyze this disaccharide. Based on these findings, what is the disaccharide you analyzed? Explain your answer. (5%)
- 4. Below are the peptide fragments generated after CNBR or pepsin treatment, respectively.

CNBR treatment: Arg-Thr

Phe-Ser-Met

Arg-Thr-Phe-Arg-Thr-Met

Pepsin treatment: Arg-Thr

Phe-Ser-Met

Phe-Arg-Thr-Met

What is the complete amino acid sequence of this polypeptide? (5%)

- 5. Describe the principle of "Edman degradation" method and the key compound for this method. (10%)
- 6. Describe the differential regulation for *lac* operon and *trp* operon in prokaryote (10%).