亞洲大學

九十五學年度轉學招生考試試題紙

學系別	考試科目	考試日期	時間
電腦與通訊學系大學部三年級	微積分	95.7.29	10:20-12:00

Keep important details of calculation in your answer sheet.

#1. Show
$$\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+y^6}$$
 does not exist! (9 Points)

#2. Find the derivative
$$f'(2)$$
 of following functions $f(x)$. (Each 7 Points)

(a) $f(x) = \ln(x^2 + 1)$ (b) $f(x) = x^x$ (c) $f(x) = \frac{x\sqrt{x^3 + 1}}{(3x + 2)}$

(a)
$$\int e^x \sin x dx$$
 (b) $\int \frac{x^3}{\sqrt{16-x^2}} dx$ (c) $\int \frac{x^2-x+4}{x(x^2+4)} dx$

(a)
$$\int e^x \sin x dx$$
 (b) $\int \frac{x^3}{\sqrt{16-x^2}} dx$ (c) $\int \frac{x^2-x+4}{x(x^2+4)} dx$

$$\frac{1}{\gamma^2} (\frac{\partial w}{\partial \theta})^2 = (\frac{\partial w}{\partial x})^2 + (\frac{\partial w}{\partial y})^2. (10 \text{ points})$$

#4. If $w(r,\theta) = f(x,y)$, where $x = r\cos\theta, y = r\sin\theta$. Show that $(\frac{\partial w}{\partial \gamma})^2 +$

#5. Let
$$R$$
 be the triangle in the xy -plane bounded by x -axis and the line $y=x$ and the line $x=1$. Calculate $\int \int_R \frac{\sin x}{x} dA$. (10 points)

#6. Let
$$Q$$
 be the solid bound by the upper napper of the cone $3z^2 = x^2 + y^2$ and above by the sphere $x^2 + y^2 + z^2 = 16$. If the density at (x, y, z) is proportional to the its distance from the origin. Find the mass of Q(10 points)

#7. Let
$$\overrightarrow{F} = \langle e^x \sin 2y, 2e^x \cos 2y + 1 \rangle$$
 be the vector field function on XY space and C represent the path from point $(1,0)$ to point $(0,1)$ along curve $(1-t^2,t^3)$, where $0 \le t \le 1$. Evaluate the work $\int_C \overrightarrow{F} d\overrightarrow{\gamma}$. (10 Points)